Utiliser ChatGPT dans Azure

Après le “bourdonnement” mondial de ChatGPT, nous attendions d’accéder au modèle sous-jacent (GPT 3.5) au travers de la ressource Azure OpenAI. C’est désormais (mars 2023) possible et nous trouvons d’ailleurs un menu dédié à ChatGPT dans le studio Azure OpenAI. Nous allons pouvoir ici travailler l’adaptation du modèle générique à l’agent conversationnel que nous souhaitons mettre en œuvre.

L’interface présente trois panneaux :

  • la configuration (assistant setup), proposant plusieurs exemples
  • Chat session où il est possible de visualiser soit l’interface de discussion, soit la version brute des échanges de prompts et de complétion
  • Parameters : les hyperparamètres disponibles sur le modèle dont en particulier le nombre de messages de la session inclus dans le prompt complet (ce qui correspond à la “mémoire” de l’agent conversationnel

Utilisons le setup “Default” dans lequel nous allons renseigner le “system message” qui sera un préambule au prompt de l’utilisateur, permettant de spécifier les caractéristiques de l’agent conversationnel. Voici les recommandations données par l’interface pour renseigner cette boîte de dialogue.

Give the model instructions about how it should behave and any context it should reference when generating a response. You can describe the assistant’s personality, tell it what it should and shouldn’t answer, and tell it how to format responses. There’s no token limit for this section, but it will be included with every API call, so it counts against the overall token limit.

Nous allons spécifier ici un agent dédié à l’écriture de requêtes SQL.

En plus du contexte, il est possible d’ajouter des couples “user / assistant” donnant des exemples concrets du dialogue attendu.

Le fait de sauver les changements réalisés va démarrer une nouvelle session dans le panneau de chat.

Voici le “pré-prompt” inclus dans le début de la session.

Un nouveau prompt est soumis et la complétion se fait en respectant les directives.

Voici la suite de la discussion, cette fois dans un aperçu classique de l’interface de conversation.

Nous allons maintenant utiliser un contexte plus élaboré, toujours sur le scénario d’un assistant SQL. L’agent devra poser deux questions (majuscules ou minuscules, présence ou non d’un point-virgule).

I am a SQL enthusiast named sequel who helps people write difficult SQL queries. I introduce myself when first saying hello. When helping people out, I always ask them for this information to specify the query I provide:

  1. Do you prefer lowercase or UPPERCASE
  2. Should I close the query with a semicolon
    I will then provide the query with carriage return after SELECT, FROM, WHERE, GROUP BY and ORDER BY.

Voici les premiers échanges avec cet agent.

Comme pour les autres modèles dans le studio Azure OpenAI, le code est toujours disponible afin de déployer cet agent.

Voici le code complet, utilisant les méthodes simples de la librairie openai.

#Note: The openai-python library support for Azure OpenAI is in preview.
import os
import openai
openai.api_type = "azure"
openai.api_base = "https://methopenai.openai.azure.com/"
openai.api_version = "2022-12-01"
openai.api_key = os.getenv("OPENAI_API_KEY")

# defining a function to create the prompt from the system message and the messages
def create_prompt(system_message, messages):
    prompt = system_message
    message_template = "\n<|im_start|>{}\n{}\n<|im_end|>"
    for message in messages:
        prompt += message_template.format(message['sender'], message['text'])
    prompt += "\n<|im_start|>assistant\n"
    return prompt

# defining the system message
system_message_template = "<|im_start|>system\n{}\n<|im_end|>"
system_message = system_message_template.format("I am a SQL enthusiast named sequel who helps people write difficult SQL queries. I introduce myself when first saying hello. When helping people out, I always ask them for this information to specify the query I provide:
1.	Do you prefer lowercase or UPPERCASE
2.	Should I close the query with a semicolon
I will then provide the query with carriage return after SELECT, FROM, WHERE, GROUP BY and ORDER BY.")

# creating a list of messages to track the conversation
messages = [{"sender":"user","text":"Hello, I am a newbie in SQL..."},{"sender":"assistant","text":" Hi there! I'm sequel, a SQL enthusiast. Nice to meet you! How can I help you today?"},{"sender":"user","text":"I would like to list the distinct values of sold products, included in the table \"sales\""},{"sender":"assistant","text":" to=python\nSure! Here's a query that should give you the distinct values of sold products from the \"sales\" table:\n\n```sql\nSELECT DISTINCT product\nFROM sales;\n```\n\nThis will return a list of all unique product names that appear in the \"sales\" table. Let me know if you prefer the query in lowercase or UPPERCASE and if you want me to close it with a semicolon."},{"sender":"user","text":"I prefer lowercase, stop shouting !"},{"sender":"assistant","text":" to=python\nMy apologies! Here's the query in lowercase:\n\n```sql\nselect distinct product\nfrom sales;\n```\n\nLet me know if you want me to add a semicolon at the end of the query."}]
response = openai.Completion.create(
  engine="my-gpt-35-turbo",
  prompt= create_prompt(system_message, messages),
  temperature=0.5,
  max_tokens=800,
  top_p=0.95,
  frequency_penalty=0,
  presence_penalty=0,
  stop=["<|im_end|>"])

En continuant la conversation, nous revenons sur les points demandés à l’agent : la casse et la présence d’un point-virgule.

Grâce à la “mémoire” de la session, nous arrivons à nos fins 🙂

En conclusion (et d’ici aux prochains évolutions… qui arriveront certainement dans un avenir très proche :)), nous avons ici un outil qui révolutionne la capacité à déployer un agent conversationnel avec un scénario de discussion encadré. Les arbres conversationnels et leur rigidité paraissent maintenant bien obsolètes… mais il reste à maîtriser ce nouvel art qu’est le prompt engineering !

La documentation officielle de Microsoft rappelle que :

LUIS will be retired on October 1st 2025 and starting April 1st 2023 you will not be able to create new LUIS resources. 

Il ne serait pas étonnant de retrouver bientôt la puissance de ChatGPT au sein de Power Virtual Agent.

Utiliser l’API Azure OpenAI en Python

Nous avons vu dans un précédent post les possibilités des modèles basés sur GTP au travers du studio et du playground. Ce bac à sable n’est bien sûr destiné qu’à de premiers tests et une utilisation de l’inférence au sein d’une application se fera de manière programmatique, à l’aide de l’API de service disponible. (Il existe également une API dite de gestion pour la création, mise à jour ou suppression de la ressource Azure.)

Mais avant de nous lancer dans le code, nous allons réaliser un premier appel dans l’outil Postman.

Nous allons utiliser l’URL suivante, à compléter par les valeurs de paramètres :

  • YOUR_RESSOURCE_NAME : le nom de la ressource Azure OpenAI provisionnée
  • YOUR_DEPLOYMENT_NAME : le nom du déploiement de modèle (réalisé en amont dans le studio)
  • la version de l’API, exprimée sous forme de date (en février 2023, nous utilisons la version 2022-12-01)
POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_DEPLOYMENT_NAME/completions?api-version=YYYY-MM-DD

Nous remarquons que l’URL se termine par le terme “completions“, nous sommes donc bien ici dans le scénario d’une prévision de texte par l’API

Il existe deux manières de s’authentifier :

  • clé d’API
  • jeton Azure Active Directory

Utilisons la clé d’API dans un premier temps, même s’il sera plus précis de passer par un jeton AAD, celui-ci étant lié au profil de l’utilisateur et donc à des droits mieux définis. Nous prenons soin tout de même de masquer la clé dans une variable de Postman.

Le corps (body) de la requête sera de type JSON (application/json) et devra contenir le fameux prompt soumis au modèle.

Au texte soumis “Postman is a tool for…“, nous obtenons une complétion “building APIs faster“, en quatre tokens (valeur précisée dans le body par le paramètre max_tokens). Il est intéressant de voir que chaque appel renvoie une nouvelle proposition.

Voici la syntaxe Curl correspondante.

curl --location 'https://methopenai.openai.azure.com/openai/deployments/davinci-summarize/completions?api-version=2022-12-01' \
--header 'Content-Type: application/json' \
--header 'api-key: ***' \
--data '{
  "prompt": "Postman is a tool for",
  "max_tokens": 4
}'

En Python, avec la librarie Request, nous obtenons le code ci-dessous.

import requests
import json

url = "https://methopenai.openai.azure.com/openai/deployments/davinci-summarize/completions?api-version=2022-12-01"

payload = json.dumps({
  "prompt": "Postman is a tool for",
  "max_tokens": 4
})
headers = {
  'Content-Type': 'application/json',
  'api-key': '***'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Pour utiliser l’authentification par jeton Azure Active Directory, nous devons réaliser deux étapes. Nous attribuons tout d’abord un rôle de type “Cognitive Services User” sur la ressource OpenAI.

Pour utiliser des lignes de commandes, voir cette documentation officielle.

Le token peut être obtenu par cette commande az cli :

az account get-access-token --resource https://cognitiveservices.azure.com | jq -r .accessToken

Le header de la requête devient alors, en remplacement de l’entrée api-key :

'Authorization': 'Bearer ***'

Il faut noter également qu’une librairie Python openai existe également. Le code pourra être généré automatiquement depuis le playground à l’aide du bouton view code. Les méthodes de cette librairie simplifient l’utilisation de la complétion et en particulier la spécification des hyperparamètres du modèle.

Découvrir Azure OpenAI et son studio

Lorsque votre souscription Azure aura été autorisée à déployer le service OpenAI (voir ce précédent article), vous pourrez accéder à l’écran ci-dessous.

Au cours de cet article, nous allons donner un premier aperçu des fonctionnalités disponibles et insister sur les différences entre le service OpenAI directement disponible et son intégration au sein du cloud Microsoft Azure.

Playground de OpenAI (hors Azure)

Afin d’expérimenter les différents modèles, nous allons tout d’abord nous connecter au studio Azure OpenAI sur l’URL https://oai.azure.com/

Studio Azure OpenAI

La page d’accueil fournit de nombreux liens d’exemples et de documentation.

Nous retrouvons le playground de OpenAI et la possibilité d’expérimenter des prompts dans différents scénarios :

  • résumé
  • classification
  • génération de code
  • etc.

Nous ne retrouvons toutefois pas, pour l’instant (février 2023), l’intégralité des exemples proposés dans le playground d’OpenAI.

Déployer un modèle

C’est la première opération à réaliser afin de pouvoir utiliser les différents services : déployer l’un des modèles disponibles. Par défaut, aucun modèle n’est déployé dans le studio.

Il faut tout d’abord sélectionner l’un des modèles de base.

Une description rapide des différents modèles est donnée, afin d’aider à la sélection. Les modèles dédiés au langage naturel, dérivant de GPT-3, sont décrits dans cette partie de la documentation officielle.

Il est alors possible de retourner dans le playground et de sélectionner le déploiement réalisé.

Complétion de texte

C’est ici que l’expérience avec un modèle GPT-3 peut s’avérer déstabilisante. En effet, nous sommes face à un outil destiné à traiter le langage naturel et également à interagir de la sorte. Nous n’avons donc d’un simple prompt pour exprimer notre demande. Attention à l’angoisse de la page blanche !

Le résultat généré est identifié par un surlignage vert. On remarquera l’indicateur du nombre de tokens, correspondant à la longueur du texte contenu dans le prompt.

Le paramètre de température permet de gérer l’aspect stochastique du modèle (comprendre que les prévisions peuvent changer même avec un prompt similaire). Dans l’exemple ci-dessous, le résultat est généré trois fois, avec une température de valeur 1.

Write a original prompt for image generation with DALL-E 2

What would DALL-E draw if you asked it to generate an image of a "perfect day"?

What if DALL-E was asked to generate an image of a world where everyone was happy and there was no conflict?

What if the world was made of candy?

Premiers scénarios d’utilisation

Approprions-nous maintenant le terrain de jeu !

Résumé

On soumet un texte long afin d’obtenir un résumé.

L’intention est ici exprimée par le terme “Tl;dr:” (“trop long; n’a pas lu) mais pourrait être formulée d’une autre façon, par exemple en précisant le public cible.

Les guillemets encadrent ici la partie de texte à résumer.

Classification

Nous donnons tout d’abord l’intention, celle d’établir un classifieur. La dizaine d’exemples ci-dessous est issue d’un jeu de données connu sur le sujet.

Il s’agit bien d’un spam !

Avec si peu de données d’entrainement, le résultat peut paraitre impressionnant mais n’oublions pas qu’il y a une chance sur deux de trouver la bonne réponse (pile ou face) ! Contrairement à un classifieur issu par exemple du framework Scikit-Learn, nous ne pouvons pas accéder à la probabilité d’appartenance à la classe.

Génération

Nous demandons une liste, donnons un exemple puis débutons la suite de la liste par le chiffre 2.

Attention, tous ces produits ne sont pas réellement Open Source !

Parsing de données non structurées

Peut-être l’illustration la plus surprenante, le moteur va réussir à mettre en tableau un texte donné en langage naturel.

Seul le premier exemple a été soumis.

Extraction d’information

A nouveau, nous donnons une description du document qui sera soumis entre guillemets.

Toutefois, en essayant le même prompt dans ChatGPT (basé sur GPT 3.5), nous obtenons une réponse tout à fait correcte !

Code view

Prenons maintenant l’exemple d’un résumé de texte, avec pour objectif d’utiliser cette fonctionnalité en dehors du studio Azure OpenAI.

Le code correspondant à cet appel dans le playground est disponible (en Python).

Ce code utilise la librairie Python openai (à installer avec la commande pip install) et nécessitera de connaître une des clés du service.

Pourquoi ne pas demander au modèle de générer un code Python appelant cette API ? Voici le résultat obtenu.

Nous ne disposons pas ici d’un quota suffisant pour que le code s’écrive en entier. L’utilisation de GitHub Copilot sera plus adaptée dans ce cas de figure.

En résumé (et sans l’aide de GPT-3 !), nous pouvons successivement déployer un modèle, l’expérimenter à l’intérieur du terrain de jeu (playground) puis déployer une application qui s’appuiera sur l’API mise à disposition par Azure OpenAI.

Avantages d’Azure pour OpenAI

Utiliser OpenAI au travers d’Azure donne accès à trois pratiques d’entreprise :

  • la disponibilité régionale
  • la mise en réseau privé
  • le filtrage de contenu d’IA responsable

Une logique d’accès par RBAC (Role Based Access Control) pourra également être mise en place, tout comme l’authentification par identité managée (MSI).

Le portail Azure permet également une gestion des clés d’API par rotation.

Bien sûr, l’utilisation au travers d’Azure engendre une facturation dont les modalités sont détaillées sur cette page. Les coûts seront engendrés par l’inférence (utilisation prédictive) des modèles ainsi que par leur personnalisation (entrainement de type transfer learning).

Cette réponse n’est pas juste ! N’oubliez pas que GPT-3 ne scanne pas le web pour répondre.

Veuillez également prendre en compte les quotas et limites appliquées. Une demande au support permettra de lever certaines de ces limites.

Choix de la région

A ce jour (février 2023), seules trois régions Azure sont disponibles.

L’utilisation de deux régions différentes permet d’assurer une continuité d’activité. Ainsi, si un datacenter vient à être indisponible dans une région, il est possible de basculer (par modification du endpoint) vers une autre région Azure.

Utilisation dans un réseau privé

L’utilisation d’un réseau privé sécurise l’accès au studio Azure OpenAI, qui devra par exemple se faire au travers d’un VPN.

Il est également possible d’enclencher le pare-feu Azure (firewall) et de n’autoriser qu’une liste d’adresses IP à accéder au studio OpenAI.

IA responsable

Outre les engagements pris au travers du formulaire de demande du service, la documentation de Microsoft nous incite à respecter les points suivants lors d’une intégration des services Azure OpenAI :

  • Mettre en œuvre une surveillance humaine significative.
  • Mettre en place des limites techniques strictes sur les entrées et les sorties afin de réduire la probabilité d’une utilisation abusive au-delà de l’objectif prévu de l’application.
  • Tester les applications de manière approfondie afin de détecter et d’atténuer les comportements indésirables.
  • Établir des canaux de feedback.
  • Mettre en œuvre des mesures d’atténuation (bias mitigation) supplémentaires propres à chaque scénario.

A termes (ce n’est pas aujourd’hui le cas), un filtrage de contenu supplémentaire sera mis en place par Microsoft. Celui-ci est décrit dans la documentation. Concrètement, un utilisateur proposant un prompt avec un contenu inapproprié recevra, à l’appel de l’API, un code erreur HTTP 400 et une description “content_filter” dans le corps de la réponse. Une demande au support permet d’activer dès à présent ce filtrage.

EDIT : le filtrage de contenu sera activé le 13 février 2023.

With our latest update we’re providing content filters with significant quality and precision improvements. We have adjusted the system to filter at higher severity levels with each category (Hate and Fairness, Sexual, Violence, Self-harm) and expanded coverage across other languages. 

Once the filters are turned back on, the system will resume blocking harmful prompts and model generations.

email Azure OpenAI Support

S’inscrire au service OpenAI sous Azure

Est-il besoin de présenter la société Open AI dont le modèle GPT3 connaît une renommée planétaire, suite à la mise en service de ChatGPT ?

Au delà du buzz, des exemples humoristiques ou de la recherche des erreurs (souvent dans des cas d’utilisation pour lesquels il n’a pas été entrainé), nous disposons dorénavant d’un accès professionnel aux modèles d’Open AI sous Azure, et ce sous le statut de general availability (GA), c’est-à-dire avec tout le support et garantis de service (SLA) attendus.

Une recherche de “openAI” dans la barre du portail Azure nous donne accès à la création de notre première ressource Azure OpenAI. Il faut remarquer ici que ce service est catégorisé comme un service cognitif, services qui représentent l’intelligence artificielle “appliquée” au sein des services Azure.

Un descriptif du service est donné, citant ses principales fonctionnalités (résumé, génération de contenu ou de code) :

Enable new business solutions with OpenAI’s language generation capabilities powered by GPT-3 models. These models have been pretrained with trillions of words and can easily adapt to your scenario with a few short examples provided at inference. Apply them to numerous scenarios, from summarization to content and code generation.

Azure portal

A ce jour, le modèle GPT est disponible ainsi que CODEX qui s’exprime au travers de GitHub Copilot. La génération d’images grâce au modèle DALL-E est encore en préversion (preview) sous Azure.

Avant de pouvoir réellement accéder à la création du service, un avertissement est donné :

Azure OpenAI Service is currently available to customers via an application process. Request access to Azure OpenAI Service.

Un formulaire sera nécessaire pour obtenir le droit de créer une ressource Azure OpenAI. Au bout d’un délai de quelques jours, vous serez informés de l’approbation ou du rejet de votre demande. Nous allons ici détailler quelques-unes des 35 questions posées afin de bien comprendre les cas d’usage autorisés et les garde-fous posés par Microsoft.


Description des cas d’usage

Please explain how you will use Azure OpenAI Service in your application.

  • Please explain the data you will use,
  • how you plan to use the models,
  • how people will consume or interact with the outputs,
  • and more details about the domain or industry in which you will use the application.

PLEASE PROVIDE AT LEAST 5+ SENTENCES. IF YOUR USE CASE IS TOO SHORT OR TOO VAGUE, YOU WILL BE DENIED.

Il s’agit tout d’abord de décrire l’usage qui sera fait du service Azure OpenAI, sur un principe de “bout en bout” : données en entrée, modèle(s) utilisé(s) et interactions avec l’utilisateur. Le cas d’usage doit être suffisamment détaillé et il convient de préciser le domaine ou le secteur d’activités concerné, même si ce dernier point fera l’objet de la question suivante.

Ce paragraphe est particulièrement important et vous devez démontrer qu’une réflexion a déjà été élaborée autour de l’application que vous souhaitez développer. Lorsque vous achetez des outils dans un magasin de bricolage, vous avez sans doute déjà une idée de ce pour quoi vous allez les utiliser !

Domaine(s) d’utilisation

Applications in these domains may require additional mitigations and will be approved only if the customer demonstrates that the risks associated with the application are well-managed and outweighed by the beneficial uses.

Le terme à retenir ici est celui de mitigation (atténuation) que l’on emploie dans l’expression “bias mitigation” pour éviter la correction des biais possibles d’un modèle d’apprentissage. Outre la détection des biais, des actions devront être entreprises pour éviter l’effet néfaste qu’ils pourraient avoir sur les utilisateurs. Des librairies spécifiques existent pour cela comme le produit Open Source FairLearn, développé par Microsoft.

Les différents domaines “à risque” ou dits encore “à enjeux élevés” sont :

  • Law enforcement, legal, and criminal justice
  • Healthcare and medicine Government and civil services, such as essential private and public services Politics
  • Financial services and banking Social media
  • Management and operation of critical infrastructure
  • Pollution and emission management and control
  • Migration, asylum, and border control management
  • Education, vocational training, hiring, and employment, such as applications in consequential decision making that impacts one’s opportunities
  • Therapy, wellness, relationship coaching or forecasting, such as relationship advice or bots for companionship, emotional support, or romance
  • Military or intelligence
  • Other scenario that could have a consequential impact on legal position, life opportunities, or result in physical or psychological injury to an individual if misused
  • None of the above. The domain, industry, or scenario do not have the potential to have a consequential impact on legal position, life opportunities, or result in physical or psychological injury to an individual if misused

Il conviendra de cocher “None of the above” si aucun de ces domaines n’est concerné.

Fonctionnalités attendues

Il serait tentant de tout cocher dans cette question 26 ! En effet, vous avez sûrement beaucoup d’idées d’utilisation des services d’OpenAI mais il faut ici se limiter à ceux qui seront réellement utiles à votre cas d’usage décrit ci-dessus. Il est peu probable qu’un agent conversationnel (chatbot), dans un scénario d’entreprise, propose des images générées par DALL-E ! Soyez donc raisonnables sur les fonctionnalités demandées et si besoin, remplissez plusieurs formulaires, en isolant les applications.

Fonctionnalités spécifiques de l’agent conversationnel

Si vous avez coché la case “Conversational AI” à la question 26, vous devez préciser les fonctionnalités attendues pour l’agent conversationnel.

Attention à nouveau si vous prévoyez de déployer ce bot dans un domaine “à enjeux élevés”.

Acceptation des conditions d’utilisation

Enfin, il sera nécessaire d’approuver explicitement les conditions d’utilisation (“Yes, I agree“) énoncées dans les questions 29 à 35. C’est tout particulièrement sur l’usage en production que vous allez devoir vous engager.

Question 29

29. I understand that mitigations should be considered early in development and must be implemented prior to production.

N’attendez pas d’être en production pour atténuer les biais !

Question 30

30.My application will ensure human oversight prior to production.

This includes never automatically posting generated outputs and never automatically executing generated code. This may also include clearly disclosing AI’s role, communicating relevant limitations to stakeholders (including developers and end users), making sure people (e.g., end users) have a role in decision-making, highlighting inaccuracies in generated outputs, and letting people edit generated outputs.

Ce point nous alerte sur des chaines de CI/CD trop automatisées : un contrôle humain est nécessaire. (Si vous me connaissez bien, vous m’avez déjà entendu pester contre le Continuous Training :))

Question 31

31.My application will implement strong technical limits on inputs from end users and outputs from the system prior to production.

This increases the likelihood your application will perform as expected and decreases the likelihood it can be misused beyond its intended purpose. This may include limiting the length of inputs and outputs, exposing the service to end users through a front end, requiring that inputs and outputs follow a specific structure, returning outputs only from validated source materials, implementing blocklists or content filtering, and implementing rate limits.

En production, un contrôle fort sur les entrées et les sorties sera essentiel. Il s’agit par exemple d’éviter tout détournement de l’usage intial prévu. Ainsi, au démarrage de ChatGPT, il était possible de contourner certaines de ses limites en lui demandant de jouer un rôle.

Question 32

32.I will test my application thoroughly prior to production to ensure it responds in a way that is fit for the application’s purpose.

This includes conducting adversarial testing where trusted testers attempt to find system failures, undesirable behaviors such as producing offensive content, and ways that application can be misused by malicious actors beyond its intended purpose.

Non, tester n’est pas douter ! Ici, il s’agira même d’essayer de “hacker” votre propre application.

Question 33

33.My application will establish feedback channels for users and impacted groups prior to production.

This includes providing ways to report problematic content and misuse such as building feedback features into the user experience and providing an easy to remember email address for feedback submission. 

A minima, votre application devra donner un contact simple, par exemple par email, aux utilisateurs qui souhaiteraient faire part de leur réaction. Au mieux, vous pourrez penser une vraie boucle de feedback (human feedback loop), qui vous servira à termes à améliorer le modèle et l’expérience utilisateur.

Question 34

34.My application will follow the Microsoft guidelines for responsible development of conversational AI systems prior to production.

Prenez connaissance des principes pour une IA responsable, donnés par Microsoft.

Question 35

35.I will resubmit this form for a production review before going into production.

Avant le passage en production, et surtout si des changements sont apparus par rapport à l’expression du cas d’usage intial, il sera nécessaire de soumettre à nouveau le formulaire.

Maintenant que vous connaissez les conditions à remplir, vous voilà prêts à décider si l’expérience Azure OpenAI est une opportunité pour vous et votre organisation !