Versionning des notebooks sous Azure Databricks

A l’aide de GitHub

Comme pour tout développement, les notebooks méritent d’être archivés et versionnés. Tout notebook sera ainsi automatiquement sauvegardé et versionné dans l’espace de travail Azure Databricks (voir la documentation officielle).

Menu Revision history du notebok

Tant que le menu latéral Revision history est visible, il n’est pas possible de modifier le contenu du notebook.

Azure Databricks permet également d’utiliser un gestionnaire de versions externe parmi les trois solutions suivantes :

  • GitHub
  • Bitbucked Cloud
  • Azure DevOps Service

Dans un même espace de travail, il ne sera possible d’associer qu’un seul des trois gestionnaires (mais il serait sans doute étrange de versionner à différents endroits…). Notons que GitLab ne fait pas partie de cette liste, à ce jour, je n’ai pas réussi à le lier à Azure Databricks. Ce n’est pas le cas non plus de la version Enterprise de GitHub.

Rappel des notions et principes de base de Git

repository : c’est le répertoire de dépôt d’un projet de développement
master : version initiale et de référence du code
branch : lors de la suite des développements, il est important créer une nouvelle branche pour ne pas dégrager le master
commit : envoi de la liste des modifications effectuées
pull request : demande de prise en compte de modifications réalisées par un autre développeur
merge : appliquer les modifications à une autre branche, souvent le master

Nous allons découvrir maintenant comment se fait le lien entre l’espace de travail Azure Databricks et GitHub. Il faut tout d’abord se rendre sur la page dédiée aux paramètres de l’utilisateur (User Settings).

Paramétrage de l’intégration Git

Depuis le site GitHub, une fois identifié, il faut créer un jeton d’accès personnel, en suivant les écrans ci-dessous. Celui-ci devra disposer des droits complets sur le repo.

Génération d’un jeton d’accès personnel dans GitHub
Accorder le contrôle complet des repositories
Association réalisée avec succès

Nous pouvons maintenant quitter la page des paramètres de l’utilisateur pour nous rendre dans le notebook de notre choix. Le menu Revision history laisse apparaître le lien Git: Synced.

Association du notebook avec un repo GitHub
Enregistrement d’une première version
Première synchronisation réussie

Le fichier est maintenant bien créé sur notre compte GitHub dans le repo associé. Chaque nouvelle révision pourra être enregistrée et commitée, en associant un commentaire.

Enregistrement (et commit) d’un révision

Par défaut un notebook python est enregistré au format .py. Les commandes magiques ne sont pas perdues et seront correctement réinterprétées à l’import du fichier sur un autre espace de travail. Afin de converser les propriétés d’affichage du notebook dans GitHub, il suffit de forcer l’extention à .ipynb lors de la première synchronisation.

Ainsi, chaque nouvelle sauvegarde se fait donc sur la branche principale (master) mais il est bien sûr possible de créer de nouvelles branches du développement, en cliquant à nouveau sut Git: synced.

création et sélection d’une nouvelle branche

La création d’une nouvelle branche fait apparaître un hyperlien vers la pull request sur le compte GitHub.


Lien vers la pull request

La comparaison des modifications et l’éventuel merge des versions se fait ensuite sur la page GitHub.

Comparaison des modifications sous GitHub

Rappelons enfin qu’il est possible d’importer un fichier par son URL, et donc par l’URL obtenue depuis GitHub. Cette fonctionnalité, couplée à l’utilisation des paramètres dans un notebook, permet de recopier le notebook d’un environnement de développement à un environnement de production.


Import d’un fichier dans l’espace de travail
Import par URL

Dans un prochain article, nous explorerons les interactions entre Azure Databricks et Azure DevOps.

Author: methodidacte

Passionné par les chiffres sous toutes leurs formes, j'évolue aujourd'hui en tant que consultant senior dans les différents domaines en lien avec la DATA (décisionnel self service, analytics, machine learning, data visualisation...). J'accompagne les entreprises dans une approche visant à dépasser l'analyse descriptive pour viser l'analyse prédictive et prescriptive. J'ai aussi à coeur de développer une offre autour de l'analytics, du Machine Learning et des archictectures (cloud Azure principalement) dédiées aux projets de Data Science.

One thought on “Versionning des notebooks sous Azure Databricks”

Leave a Reply