Relancer un notebook Databricks en cas d’échec

Le code utilisé dans un notebook peut échouer pour une raison autre qu’un erreur de développement : fichier absent, API ne répondant pas, etc. Il peut donc être pertinent de relancer automatiquement un traitement en cas d’échec.

La documentation Databricks fournit un exemple de fonction, en Python ou en Scala, qui réalise ce mécanisme. Le code est bien sûr basé sur la fonction dbutils.notebook.run déjà présentée dans un précédent post.

Voici le code en Python, où un nombre d’essais maximum de 3 est paramétré par défaut :

 # Errors in workflows thrown a WorkflowException. 
def run_with_retry(notebook, timeout, args = {}, max_retries = 3):
   num_retries = 0
   while True:
     try:
       return dbutils.notebook.run(notebook, timeout, args)
     except Exception as e:
       if num_retries > max_retries:
         raise e
       else:
         print "Retrying error", e
         num_retries += 1

Et voici ce que l’on obtient à l’exécution. Attention à bien préciser le chemin relatif du notebook ainsi piloté, si celui-ci n’est pas situé au même niveau que le ce “master notebook”.

Attention à ne pas abuser de ce processus ! Il est essentiel de comprendre la nature des erreurs rencontrées et d’y apporter des réponses au travers du code.

Author: methodidacte

Passionné par les chiffres sous toutes leurs formes, j'évolue aujourd'hui en tant que consultant senior dans les différents domaines en lien avec la DATA (décisionnel self service, analytics, machine learning, data visualisation...). J'accompagne les entreprises dans une approche visant à dépasser l'analyse descriptive pour viser l'analyse prédictive et prescriptive. J'ai aussi à coeur de développer une offre autour de l'analytics, du Machine Learning et des archictectures (cloud Azure principalement) dédiées aux projets de Data Science.

Leave a Reply