Piloter l’exécution des notebooks Databricks

Azure Databricks est un service managé de cluster Spark, permettant d’exécuter du code Scala, Python, R ou SQL sur des volumes importants de données, grâce à son approche distribuée et en mémoire.

Si le meilleur scénario de mise en production d’un traitement reste de créer un fichier Jar à partir de code Scala (voir un prochain billet de ce blog), il peut être très utile d’ordonnancer le lancement de notebooks Python car il n’existe pas aujourd’hui d’approche similaire à celle du fichier Jar.

Deux éléments seront importants dans une approche de mise en production :

  • Pouvoir modifier facilement un paramètre d’environnement (dev / qualif / prod par exemple)
  • Réaliser un enchainement conditionnel des traitements, avec un minimum de logs de suivi

Nous allons voir ici plusieurs solutions qui sont disponibles dans un environnement Azure. Nous considérons que nous disposons déjà des ressources suivantes :

  • Un compte de stockage Azure avec deux containers (« citidev » et « citiprod »)
  • Une ressource Azure Databricks avec un cluster déjà créé (« myDBcluster »)
  • Une ressource Azure Data Factory déployée
  • Un notebook Python contenant les transformations à effectuer (chargement des données et création d’une table temporaire)

Créer une tâche planifiée (job)

Le premier réflexe sera d’utiliser l’interface Azure Databricks de création de job.

Job scheduling in Azure Databricks

Nous précisions les éléments suivants :

  • Le notebook voulu
  • Le jour et l’heure d’exécution (syntaxe CRON de type 0 0 * * * ?)
  • Le cluster d’exécution ou bien la configuration d’un nouveau cluster qui sera créé au lancement
  • D’éventuelles dépendances de librairies
  • D’éventuels paramètres pour l’exécution

Nous allons nous servir de cette notion de paramètre pour passer à notre notebook le nom du container qui désigne l’environnement.

Afin de récupérer la valeur de ce paramètre dans le notebook, nous définissons une première cellule à l’aide du code ci-dessous.

Nous exploitons ici la notion de widget qui permet de récupérer une valeur dans un élément visuel comme une zone de texte, une liste déroulante, une combo box… La documentation officielle donne l’ensemble des possibilités.

Lancer un notebook depuis un autre

Nous nous appuyons de nouveau sur cette astuce pour piloter le lancement de notebooks à partir d’un notebook « master ».

La commande magique %run est suivie du chemin du notebook puis de la valeur attendue pour le paramètre d’environnement.

Nous constatons ici que le notebook lancé a renvoyé un message lorsqu’il s’est terminé. Cela est réalisé dans la dernière cellule du notebook par la commande ci-dessous.

Créer un pipeline Azure Data Factory

Azure Data Factory v2 est le parfait ordonnanceur de tâches de copie ou de transformation de données au sein de l’écosystème Azure et en interactions avec des sources extérieures au cloud de Microsoft. Charles-Henri Sauget a publié un ouvrage référence sur le sujet.

Nous devons ici définir un service lié de type Azure Databricks en précisant :

  • La souscription Azure utilisée
  • L’espace de travail Databricks
  • Un jeton d’accès (access token) que l’on obtient depuis l’interface Databricks

Attention à bien noter ce token lors de sa création, il ne sera plus possible de l’afficher par la suite !

Nous créons ensuite un pipeline contenant au moins une activité de type Databricks notebook.

Cette activité est associée au service lié défini préalablement.

Enfin, nous définissons le paramètre d’accès à l’environnement voulu.

Une astuce permet d’obtenir facilement le chemin vers le notebook : il suffit de cliquer dans l’explorateur sur la flèche à droite du notebook, puis cliquer sur “Copy File Path”.

Azure Data Factory met ensuite à disposition son système propre de planification ou de déclenchement sur événement (trigger).

En résumé

Selon la complexité de votre scénario, voici les trois possibilités qui s’offrent à vous :

  1. Planification d’un notebook unique
  2. Utiliser le job scheduler de l’espace de travail Databricks
  3. Enchainement de plusieurs notebooks
  4. Créer un notebook « master » et utiliser la commande magique %run
  5. Enchainement du notebook avec des traitement extérieurs à Databricks
  6. Créer un pipeline Azure Data Factory

Et pour aller encore plus loin dans l’accès aux bons environnements, n’oubliez pas d’utiliser les secret scopes que je présente dans cette vidéo.

Survol du service Azure Machine Learning

L’essor actuel du Machine Learning (apprentissage automatique, branche de l’intelligence artificielle) est en partie dû à la puissance de calcul obtenue au travers du Cloud Computing, représenté en particulier par Microsoft Azure.

De plus, l’approche des « Platforms as a Service » permet d’aller à l’essentiel, sans perdre de temps dans la configuration fine de machines virtuelles.

Au travers du service Azure Machine Learning, Microsoft propose un panel d’outils permettant d’accompagner les data scientists et les data engineers du développement de modèles prédictifs jusqu’à leur mise en production.

Afin de construire un premier modèle prédictif, trois solutions sont accessibles depuis le portail et correspondent à différents scénarios d’utilisation ainsi qu’à différents profils d’utilisateurs. Nous détaillerons ces trois services ci-dessous.

Azure Machine Learning Service – Visual Interface

Anciennement connu sous le nom de Azure Machine Learning Studio, ce produit est une interface graphique permettant de construire un « pipeline » de Machine Learning, depuis le chargement des données jusqu’à l’entrainement et l’évaluation du modèle, en passant par des étapes classiques de préparation des données.

Azure Machine Learning Service – Automated ML

Il existe des dizaines de modèles de Machine Learning et tous méritent d’être essayés sur les données, car, sauf grande expérience (et bonne intuition !), il est difficile de choisir a priori le modèle le plus adapté. L’approche de l’Automated Machine Learning consiste à tester une batterie de modèles et à trouver leur meilleur paramétrage, sur la base de métriques de performance, le tout de manière automatique.

Azure Machine Learning Service – Notebooks VMs

Les notebooks Jupyter se sont imposés comme un environnement de développement chez les Data Scientists qui affectionnent particulièrement son aspect interactif et sa capacité à devenir rapidement un support de présentation.

JupyterHub et JupyterLab sont deux moyens de lancer des notebooks pour lesquels on choisira un « kernel » parmi ceux disponibles (Python, R, Scala…). La puissance de calcul est ici définie par une taille de machine virtuelle associée au serveur de notebooks.

Les machines peuvent être démarrées ou arrêtées selon les besoins, lorsqu’elles sont arrêtées, le service n’est bien sûr pas facturé.

Dès que la machine est démarrée, il est possible d’accéder à JupyterHub ou JupyterLab.

D’autres moyens existent pour utiliser les notebooks Jupyter comme par exemple le site https://notebooks.azure.com/ qui met à disposition une capacité de calcul gratuite (free compute) mais sur lequel il est également possible de relier une ou plusieurs machines virtuelles créées dans Azure (direct compute).

Que propose Microsoft pour la Data Science ?

En mars 2019, je publiais sur un blog ami cet état des lieux de l’offre Microsoft pour la Data Science : https://www.stat4decision.com/fr/microsoft-pour-la-data-science/

Depuis, la version Gen2 d’Azure Data Lake Storage est sortie (le logo a évolué). Azure Machine Learning Service est devenu un portail à part entière : ml.azure.com et depuis

Voici un aperçu des fonctionnalités en vidéo de ce qui s’appelle pour l’instant Azure Machine Learning Web Experience.